ИННОВАЦИОННАЯ НАНОТЕХНОЛОГИЯ ЦЕМЕНТА

М.Я.Бикбау,
Генеральный директор ОАО « Московский ИМЭТ»
акад.РАЕН, Нью-йоркской академии и др., ,д.х.н.

          Изобретение  портландцемента в начале 18 века и, несколько позднее - железобетона,  позволило человечеству   значительно масштабней преобразовывать лик планеты в современные дороги и плотины, высотные здания  и стадионы  -  более 90 %  зданий и сооружений  во всем мире строятся из бетона,  объем производства которого  уже  превышает   5 млрд. куб. м  ежегодно.

В настоящее время  цементные заводы по всему миру производят практически одинаковый продукт, качество которого определяется марочностью,  включающей  комплекс требований  к  строительно-техническим  свойствам, при этом ключевыми характеристиками  является прочность тестируемых образцов   бетона  на сжатие и изгиб  в 28 суток твердения с различными вариациями по темпу  набора прочности до этого периода.

           Ключевыми  составными частями бетонных смесей являются  в дополнении к портландцементу   кварцевый песок, называемый мелким заполнителем бетона и щебень – крупный заполнитель. Единственным  видом  беспесчаного бетона является крупнопористый бетон, названный нами КАПСИМЭТ, структуру которого   составляют зерна крупного заполнителя, покрытые  тонкими  оболочками  цементного камня. Применение в качестве крупного заполнителя  керамзитового гравия  для КАПСИМЭТА позволяет строить  легкие и теплые, негорючие, экологически чистые однослойные стены для  жилья, применение плотного крупного заполнителя позволяет строить по технологии КАПСИМЭТ фильтрующие бетоны и дренирующие бетоны для  дорожного строительства.

         Традиционные бетоны, так же как и все остальные продукты на основе  связующего  -  портландцемента, включают обязательным компонентом  кварцевый песок, играющие роль   не только « мелкого заполнителя», но и реагента, вступающего  в химическую реакцию с продуктами гидратации портландцемента  с образованием на конечной стадии  основных минералов,  обеспечивающих  прочность и долговечность бетонам – гидросиликатов кальция.

          Упрощенный вариант  химической реакции формирования цементного камня, с указанием  начального и конечного состава реагентов:

3 CaO SiO2  + 3  H2O    +   SiO 2   =     2 ( CaO SiO2 H2O)   +     Ca (OH)2

Таким образом, в сформировавшемся бетоне присутствует  два вида гидратных минералов   -  гидросиликаты  кальция и гидрооксид  кальция. Соотношение    масс указанных фаз цементного камня , % масс.   :

гидросиликаты кальция    - 85,3
гидрооксид кальция         - 14,7

         Казалось бы содержание гидроксида кальция невелико ,но именно его присутствие  значительно  ослабляет   строительно-технические свойства цементного камня и прежде всего прочность в связи с пластинчатой, слоевой морфологией   кристаллов  гидроксида  кальция ,по которым обычно проходит разлом материалов  и их склонностью к перекристаллизации при изменении влажности  окружающей среды.

         В этой связи для повышения прочностных  свойств цементного камня было бы желательно отсутствие  в нем гидрооксида кальция  , но еще более эффективный вариант – связывание гидрооксида кальция в более прочный и долговечный гидросиликат кальция , что может происходить по  реакции:

Са (ОН)2  +  SiO2    =    CaO SiO2 H2O

         Такая реакция происходит в разработанных нами малокликерных   наноцементах ,где  она обеспечивается  уровнем  дисперсий  кремнезема   ((от нескольких до десятка  мкм ) сопоставимым  с размерами частиц  цемента  .  В этом случае наблюдается  интенсивный рост прочности цементного камня в бетонах  даже при  рекордно низком  количестве цемента в бетонной смеси (табл.1).

Результаты ,полученные  при испытаниях малоклинкерных цементов  в НИИМосстрое , значительно  превышают  высшие мировые достижения . К сожалению, новая технология  цемента, прошедшая  сотни подобных успешных  испытаний , в  том числе в США, с разработанной нормативной и научной  базой , принятая к освоению в СССР, когда были получены и эффективно применены в производстве высококачественных бетонов  десятки и сотни тысяч  нового материала,    планировавшаяся к массовому освоению  цементными заводами ,сегодня в России никому не нужна…

          Пустые слова говорятся в стране о энергосбережении, какие там лампочки, когда  доказанные возможности экономии  миллионов тонн топлива  не реализуются в промышленности…

Таблица 1

СМС-40 и СМС-90 Московского ИМЭТ в ГУП НИИМосстрой

* -  В качестве исходного портландцемента для получения  СМС-40 (40 % масс. цемента)  и СМС – 90 (90 % масс. цемента) применялся  цемент Мордовского завода :М - 500,Д – 0Н

Основной проблемой предприятий отечественной  цементной промышленности остаются высокие затраты топлива, составляющие по России: на предприятиях сухого способа производства - около 154 кг у.т./т клинкера; мокрого - около 212 кг у.т./ т клинкера, а в среднем по заводам России с подавляющим преобладанием мокрого способа (88%) - около 206 кг у.т./т клинкера. Уровень удельных затрат топлива современных цементных предприятий, работающих по сухому способу в Японии, КНР и других странах, составляет  всего  115- 120 кг у.т./т клинкера. Цементные заводы России продолжают расточительно сжигать природные богатства страны.

В связи с регулярным  в России повышением цен на газ – основное топливо, применяемое сегодня цементными заводами, - трудно представить в перспективе конкурентоспособность предприятий, работающих на газе по мокрому способу, с зарубежными заводами, работающими по сухому способу.

Российский цемент не способен конкурировать с турецким или китайским, прежде всего, в связи с высокой себестоимостью, которая для российских предприятий составила на тонну продукта: в 2006г. – 1300руб.; в 2007г. – 1500 руб. и в 2008г. – 2000 руб.

Рост потребления цемента в России в 2005 – 2007г.г. вызвал, с одной стороны, соответствующее повышение цен на цемент: в 2005г. – на 44%, 2006г. – на 50% и в 2007г. - на 65%. В конце 2007г. цены на цемент в России в 2 раза превысили европейские, что вызвало интерес иностранных производителей к его поставке, которая уже в 2008г. составила 7,5 млн.т.

В то же самое время официальные перспективы развития строительства в стране, доведение объемов ежегодного ввода жилья до 150 – 160 млн.кв.м, декларированные Правительством РФ, предполагают значительные потребности цемента в России:

2010г.

2015г.

2020г.

2025г.

80-90 млн. т

125-127 млн. т

150-162 млн. т

190-206 млн. т

Приведенные данные говорят о том, что для обеспечения строительства в России необходимо ежегодно увеличивать производство цемента как минимум на 6-7 млн. т (т.е. вводить два современных завода).

Для справки: в 2007 году в России произведено 60,7 млн. т цемента, введено 60 млн.кв.м. жилья - около 0,45 кв.м. на одного человека- и построено 495 км автомобильных дорог; за тот же год в КНР произведено 1 млрд. 350 млн. тонн цемента и введено 2 млрд. 170 млн. кв. м. жилья - около 1,5 кв. м. на человека и построено 47000 км автомобильных дорог.

Необходимость радикального увеличения объемов строительства жилья, к которой добавляется не менее острая проблема обеспечения цементом масштабного строительства автомобильных и железных дорог с цементно-бетонными основаниями, делает проблему производства дешевого и качественного цемента неотложной.

Предполагаемое в последние годы проектирование и строительство новых цементных заводов, начатое десятком компаний с наступлением мирового финансового кризиса, отложилось на долгое время, тем более в условиях, когда существующие цементные заводы работают на 70 – 75% своей мощности и нет уверенности в реализации декларированной Правительством востребованности в цементе. При этом повышение объемов производства цемента Правительство и потенциальные инвесторы связывают со строительством новых цементных заводов, с необходимостью капиталовложений в пределах около 300 долларов США за тонну цемента, что требует для среднего завода производительностью 2 млн. т. в год 600-700 миллионов долларов США и 3-4-х лет на проектирование и строительство.

Одним из эффективных направлений энергосбережения в производстве цемента, получившем распространение во всем мире, является совместный помол цементного клинкера с вводимыми минеральными добавками в виде пуццолановых пород, зол и шлаков. Так, в США средний объем вводимых минеральных добавок составляет около 40% , в КНР – 35% от массы цемента, что позволяет снизить удельные затраты топлива на тонну цемента  на   30 – 40 кг у.т. на тонну продукта. Близкое содержание энергосберегающих минеральных добавок применяют цементные заводы в Японии, Турции и европейских странах. Одновременно, ввод минеральных добавок позволяет значительно ,в соответствии с требованиями Киотского Протокола , и снизить массу СО2,  составляющую сегодня в России около 300 кг  на каждую тонну производимого цемента .

С целью реализации энергосбережения  и снижения выбросов  СО2  в 2003г. в России был принят ГОСТ 31108-2003, по которому допускается ввод минеральных добавок до 65% от массы цемента. Однако, возможности  этого  ГОСТа  до последнего времени не использует  ни один наш цементный завод .

В настоящее время структура портландцемента, выпускаемого в России, включает, в среднем, долю минеральных добавок в количестве 11,5% от массы цемента. При производстве малоклинкерных цементов по предлагаемой технологии механохимической активации возможен ввод в цемент минеральных добавок в значительно больших количествах: от 40-45% масс. до 60-75% масс. цемента с сохранением высокой марочности цементов - в пределах от 32,5 до 62,5 МПа (по ГОСТ 31108-2003).

  Предлагаемая технология наноцемента позволяет не только расширить объемы производства цемента в России с минимизацией капиталовложений до уровня 40-50  US $  достаточно в короткие сроки, без необходимости строительства комплексных полномерных цементных заводов, но может позволить решить региональные проблемы с дефицитом цемента в труднодоступных  и далеких для транспорта районах   страны, или в районах с затруднительным доступом вследствие перегрузки транспортных магистралей.

Такие  ограничения  по доставке материалоемких грузов  наблюдается в настоящее время  в районах строек, осуществляемых для проведения зимних Олимпийских игр 2014года  в г. Сочи.

В настоящее время поставка цемента осуществляется в районы Олимпийских строек в специальных вагонах – хопрах, требующих приемных участков в виде прирельсовых цементных складов с цементными силосами и соответствующей техники. Существующих на сегодня складов совершенно недостаточно для приёма и хранения необходимых объемов цемента, что сказывается на задержках в своевременных поставках цемента и его использовании для производства бетонов.

         Конкурирующая с автомобильным и железнодороржным транспортом возможность поставки цемента морским путем связана с ограничениями по приемке судов и их выгрузке. Действующий на юге  России терминал имеет Новороссийский торговый порт с мощностью перевозки 1,3 млн. т в год, но он  весьма загружен. Не спасает положения и ввод в прошлом году первой очереди цементного терминала в г. Ростове-на-Дону мощностью 0,2 млн.т.

         Нами предлагается для своевременного обеспечения олимпийских игр в Сочи ввозить в регион портландцементный клинкер вместо непосредственно цемента с экономически выгодной переработки его на местах потребления в высококачественный цемент, тем более новая отечественная технология наноцемента, разработанная и реализуемая ОАО «Московский институт материаловедения и эффективных технологий», позволяет:

- отказаться от использования специальных вагонов - хопров;

- перевозить  цементный клинкер  в биг-бегах и насыпью в любых вагонах и автотранспорте, хранить в обычных складских условиях, с сохранением   качества   годами;

- необходимый объем перевозки клинкера при условии применения технологии наноцемента сокращается по сравнению с цементом в два раза;

- производить помол клинкера на местах потребления с минеральными добавками, например, в виде кварцевого песка, пуццолановых пород, шлака, зол  получая при этом  из одной тонны клинкера две тонны высококачественного цемента, согласно схеме на рис.1.

- исключить необходимость  дорогостоящих перевозок по стране на тысячи км  нерудных материалов – щебня и песка, так как новый цемент позволяет  успешно применять для высококачественных бетонов местное сырье.

Технологическая схема производства малоклинкерных наноцементов с минеральными добавками

Рис.1.Технологическая  схема  производства малоклинкерныхнаноцементов  с  минеральными  добавками

В  качестве   основного  помольного  агрегата   в  разработанной  нами  технологической  схеме  получения  наноцемента  используют производимые промышленностью  трубные   шаровые    мельницы   куда  подаются  все  компоненты  смеси,  включая  портландцементный  клинкер   и   минеральные  добавки,  в   кусковом    виде    с   предварительной  сушкой,  при  необходимости.  При  этом  в   шаровой  мельнице   достигается   не  только  эффективное   измельчение  и  механоактивация  зерен  клинкера  и  частиц  минеральных  добавок,  но  и  нанокапсуляция  частиц  модифицированной  полимерной   оболочкой.

     Для  производства    наноцемента  в  промышленных  условиях  к  помольному  комплексу    с  шаровыми  мельницами  предъявляются  следующие  требования:

- наличие  весовых  дозаторов  непрерывного  дозирования органических  добавок - модификаторов  с  допустимой  погрешностью  не  более  0,1 – 0,25%;

- наличие  дозаторов  для  раздельного  весового  дозирования  клинкера,  гипса  и    минеральных  добавок  перед  их  подачей  в  мельницу;

- работа  должна  осуществляться  в  режиме,  обеспечивающем  максимальную  механоактивацию  вяжущего (мельница, снабженная  высокоэффективным  сепаратором);

- обеспечение  необходимой  загрузки  камер  мельницы   разноразмерными  шарами (последнюю  камеру  желательно  загружать  цильпебсами  различного  размера).

   Основными  особенностями  технологии  процесса  механохимической

активации  при  получении  наноцемента  являются:

- высокая  точность  весовой  дозировки  компонентов;

- достижение  определенного  заданного  гранулометрического  состава  наноцемента,  особенно  клинкерной  части  вяжущего;

- обеспечение  достаточного  времени  для  реализации  процесса  механохимической  активации  и  микрокапсуляции  частиц  вяжущего.

Одним  из  важных  условий  для  получения  наноцемента  заданного качества  является  желательная  минимальная  влажность  исходных  компонентов,  суммарная  величина  которой  не  должна  превышать  3% масс.  Только  при  надлежащем  соблюдении  этих  требований  достигаются  заданные  свойства  наноцемента.

Как отмечалось выше,  в  качестве  клинкерных  добавок  при  производстве  наноцемента  могут  использоваться  существующие в регионе не  только  различные  природные  пуццолановые  породы,  мелкие  кварцевые  пески,  отходы  вскрыши  и т.п.,  но  и техногенные  отходы:  золы  и  шлаки  различных  производств,  которые,  как  правило,  хранятся  на  открытых  площадках. Поэтому  основными  требованиями  к  минеральным  добавкам  являются  не  только  высокое  содержание  кремнезема  и   соединений,  но и    минимальная  влажность  исходных  компонентов, суммарная  величина  которых  не  должна  превышать  3% масс. В  этой  связи  разработанная    технологическая  схема  включает  участок  сушки кремнеземистых добавок.

К настоящему времени накоплен значительный опыт работы по новой  технологии России, разработана первичная нормативная база, проведены сертификационные испытания, в частности, в США, Испании и Италии. Опыт промышленной реализации механохимически активированных наноцементов позволил   начать  освоение  новой технологии   в практике цементной промышленности, на настоящее время  произведено  и успешно применено  более млн   тонн  нового  цемента.

Строительно-технические свойства механохимически активированных цементов позволяют получать на их основе высокопрочные бетоны марок 500–800 и сверхпрочные бетоны до марок 1300–1500, широкий ассортимент железобетонных изделий без применения пропарки, а также быстротвердеющие, водонепроницаемые и другие весьма необходимые в современном строительстве бетоны. Освоено производство и применение высококачественных железобетонных изделий с повышенной долговечностью, что подтверждено двадцатилетним опытом применения новых бетонов в военном, специальном, традиционном  строительстве и благоустройстве.

       Механохимическая обработка цемента позволяет производить разработанные и сертифицированные ОАО «Московский ИМЭТ»  наноцементы под наименованием «Сухие  механоактированные смеси (СМС)» - цементы со сниженным содержанием клинкерной части до 90 % масс, (СМС-90), 75% масс. (СМС-75) и 50% масс. (СМС-50) по ТУ-5735-040-05442286-00 с прекрасными строительно-техническими свойствами  (табл.1) .

 В табл.2 приводятся средние данные   наноцементов  для составов: СМС-90, СМС-75 и СМС-50, включающих химически наиболее инертный материал – кварцевый  песок.

Таблица 1

Основные показатели наноцементов - механохимически активированных сухих смесей (СМС)– портландцемент с кварцевым  песком

Основные показатели наноцементов - механохимически

Общая схема компоновки оборудования разработанной технологии приводится на рис.2. Конструкция шаровой трубной  мельницы 2,9х11 м предусматривает создание в ней разряжения на выходе продукта максимально до – 1100 Па для увеличения производительности за счет уноса мелкодисперсных частиц смеси.

Производительность мельницы задается подачей компонентов цемента и составила  50 т/час. Аналогичные по габаритам мельницы в России имеют существенно отличную шаровую загрузку, ввиду отсутствия предизмельчения материалов перед подачей в мельницу.

Технологическая линия по производству малоклинкерного наноцемента с минеральными добавками

Рис.2 Технологическая линия по производству малоклинкерного наноцемента с минеральными добавками.

Для реализации технологии необходимо создать на площадках ЖБИ, ДСК и других предприятий в районе Сочи региональные помольные цеха мощностью  300-350 тыс. т цемента в год. С учетом экономии на транспорте цемента возрастающих потребления и стоимости цемента окупаемость капиталовложений в такие цеха составит, в зависимости от объема производства, от двух  до четырех лет. Наноцементы способны изменить идеологию производства изделий из бетона за счет отказа от пропарки.

Новая технология дает возможность активного вовлечения в производство цемента местных  нерудных материалов : некондиционных щебней и гравия , мелкозернистых песков и  кремнеземистых добавок, как природных пород , так же зол и различных шлаков. Подобная схема применялась в послевоенные годы прошлого века во Франции, в Европе в настоящее время насчитывается 70 помольных цехов, измельчающих привозной клинкер. Такой подход широко используется в КНР: клинкер производится на мощных предприятиях, 50-70% его измельчается в цемент непосредственно на цементных заводах, а остальная часть клинкера продаётся на небольшие предприятия, которые перерабатывают его в цемент на своих помольных линиях добавляя местные минеральные добавки.

Одним из выдающихся качеств  наноцементов ,в отличие от обычных , является уже подтвержденная результатами испытаний сегодня (табл.1) их способность не терять качество годами как при хранении в таре ,так и в цементных силосах ( табл.3). Пока это не удалось никому в мире.

Характеристики свежих и длительно хранившихся  наноцементов -  вяжущих низкой водопотребности - производственного выпуска: 1-Здолбуновский цементно-шиферный комбинат, 1989 г.; 2-Белгородский цементный завод, 1992 г.

Характеристики свежих и длительно хранившихся наноцементов

Разработанные малоклинкерные цементы позволяют радикально повысить качество и долговечность изделий из бетона и железобетона. Так, в частности, они позволяют производить высококачественные панели и плиты для массового строительства жилья и дорог не только с экономией цемента, но и с исключением традиционной пропарки изделий, с одновременным сокращением расхода электроэнергии и тепла.

Размер капиталовложений на ввод одного помольного цеха мощностью 0,5 млн.т в год составит около 20 млн. долларов США, что в 8 - 10 раз ниже стоимости удельных капиталовложений при строительстве новых цементных заводов.

Продажу клинкера цементными заводами России для цехов помола наноцемента, в том числе, например, в районе Сочи можно оформить как государственный заказ, тем более что цементные заводы могут поставлять его на создаваемые помольные цеха в зимнее время, когда спрос на цемент резко падает, а производить цемент впрок заводам невозможно в связи с ограничением сроков хранения цемента 2-мя месяцами и отсутствием емкостей для хранения. Подобную схему реализации  новой технологии  можно эффективно использовать и для труднодоступных районов – Крайнего Севера, Сибири и других  регионов, тем более не имеющих прирельсовых складов для получения цемента.

Отсутствие широкомасштабного освоения технологии наноцемента в России  является ярким примером несостоятельности надежд руководства страны на рыночный механизм освоения инноваций в ее промышленности.


Рейтинг: 7.8/10 (12 голосов всего)

ОАО "Московский ИМЭТ"

  • 127521, Москва, 17 проезд Марьиной рощи, 9

ЭКОНОМИКА »

РАЗВИТИЕ КРЫМА КАК ПРИОРИТЕТНАЯ ЗАДАЧА

В середине августа Правительство России представило целевую программу (ФЦП) по развитию Крымского федерального округа. Она предусматривает выделение на период до 2020 г. 654 млрд. рублей из федерального бюджета для решения приоритетных социально-экономических задач на полуострове. Ещё в середине ...

НУЖЕН ЛИ РОССИИ 86-й СУБЪЕКТ ФЕДЕРАЦИИ?

С вхождением в нашу страну Крыма, в России появились дополнительно два субъекта: автономная Республика Крым и Севастополь (84-й и 85-й субъекты). В настоящее время одними из приоритетных задач Российской Федерации являются завершение работы с законодательством, направленной на полноценное...


Дмитрий Самигуллин: Тренд всех мировых рынков – максимальная прозрачность

В условиях западных санкций российские предприниматели активно осваивают новые географии. Все больше крупных и средних компаний из России выходят на рынки Ближнего Востока и Азии, адаптируют свою продукцию под требования Халяль и учатся работать с клиентами с другим культурным кодом. Эксп...

Энергетике нужны новые, прорывные технологии.

Справка. Валерий Арташесович Саакян работает в энергетической отрасли более 40 лет,...